
ADA47 632 AN APPLICATIONO6 DSCRMNAI ANALYSIS TO THE
SELECTION OF SOFTWARE COST.U) AIR FORCE INST OF TECH
WRHT-PATTERSON AFR OH SCHOOL 0F SYST. J TSTEIG

1UNC ASSIFIED SEP 84 AFITGSMLSY84S-28 Ff0 14/1I N

I1.0 :t i W 2 .5
13.2

L 36

fl111111.25 *I.L: 1±6

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS- 1963-A

~OF

M___

AN APPLICATION OF DISCRIMINANT ANALYSIS

TO THE SELECTION OF .

SOFTWARE COST ESTIMATING MODELS

Jeffrey T. Steig
Captain, USAF

AFI T/GSM/LSY/84S-26

~1984

__ AIRFORCEAIR UNIVERSITYB

L& EATEN FTEAIR FORCE INSTITUTE OF TECHNOLOGY

W right- Patterson Air Force Base, Ohio

bowA

AF IT/G8VLSY/84

AN APPLICATION OF DISCRIMINANT ANLYSIS

TO THE SELECTION OF

SOFTWARE COST ESTIMT~WING MODELS

Jeffrey T. Steig
Captain, USAF

AF1IT/GSM/LSY/84S-26

Approved for public release; distribution unlimited

D"T1C
E E-l

°V

The contents of the document are technically accurate, and

no sensitive items, detrimental ideas, or deleterious informa-

tion are contained therein. Furthermore, the views expressed

iit Lhe document are those of the authors and do not necessarily

reflect the views of the School of Systems and Logistics, the

Air University, the United States Air Force, or the Department

of Defense.

Accession Tor
VTIS GRAMI

DTIC TAB
UnannoCun1ced
justif icat to

Distribution/
AvailabilitY CodesAvailand/o

Dist special

-~ '--- ~ - ~S.. . . . I I -_

AFIT/GSM/LSY/84S-26

AN APPLICATION OF DISCRIMINNT ANALYSIS TO THE

SELECTION OF SOFTWARE COST ESTIMATING MODELS

THESIS

Presented to the Faculty of the School of Systems and Logistics

of the Air Force Institute of Technology

Air University

In Partial Fulfillment of the

Requirements for the Degree of

Master of Science in Systems Management

Jeffrey T. Steig, B.S.

Captain, USAF

September 1984

Approved for public release; distribution unlimited

Preface

The purpose of this study was to improve the accuracy of

software development costs estimations. Software

expenditures are increasing exponentially while ability to

estimate their costs remains only mediocre.

Although the results of the study did not indorse

further use of determinants for selection of software cost

models, more research area could potentially reveal a use for

determinant analysis within the field of software

estimating.

Several persons contributed significantly to this

study. My advisor, Mr. Rich Murphy originally had the idea

of applying discriminant analysis to the problem of selecting

a model. Most of the data was made available by Captain Joe

Dean from ESD and Andy Naiberg of TASC. Captain Art Mills,

Mr. Dan Ferens and Captain Joe Dean each spent hours

answering questions and lending their expertise from the

field of software cost estimating. I would like to also

thank the people from OSM and ECI for the unfunded use of

their models. Most importantly, I deeply appreciate the

untold sacrifices of my wife Shelly, who, despite the birth

of our third child, assumed all my extra duties while I

worked on AFIT graduation requirements.

Jeffrey T. Steig

ii

Table of Contents

Page

Preface I

List of Figures V

List of Tables vi

Abstract ... vii

I. Introduction 1

Justification I
Problem Statement 2
Scope of Research Effort 4
Hypothesis 5

II. Literature Review 6

Problem Justification 6
Review of Model Comparison Studies 9
Model Selection 14

III. Methodology 16

Cost Estimating Procedure 16
Discriminant Analysis 19
Success Criteria 24

IV. Findings and Analysis 26

Selection of the Determinants 26
Interpretation of the Discriminant Function. 30
Analysis of the Classification Function 33

V. Conclusions and Recommendations 38

Conclusions .. 38
Limitations inteeerh 40
Recommendations for Further Study 41

iii

Appendix A: Summary of the Discriminant Analysis
Pg

Techniques Used in this Study 44

Appendix B: Model Descriptions 51

Appendix C: Model Inputs 70

Appendix D: Model Outputs 77

B ibl iography 0 81

Vita .. 8

List of Figures

Figure Page

1. Plot o4Group Cntroids.................... 32

List of Tables

Table Page

I. Summary of Stepwise Classification Scores 29

II. Mean Values for Variables by Model-Group 30

III. Relative Levels of Complexity by Model-Group .. 30

IV. Group Centroids 31

V. Canonical Discriminant Function Coefficients .. 33

VI. JacKKnifed Classification Performance 35

VII. Comparison of Overall Error 36

VIII. COCOMO Cost Driver Effort Multipliers 59

vi

AFIT/GSM/LSY/84S-26

Abstract

This investigation attempted to improve software cost

estimating through the use of discriminant analysis.
/

-. Currently, no quantitative methods exist to quantitatively

select the best software cost estimating model for a

particular software type or environment. By identifying the

characteristics of the software that each model was best able

-thv estimate, those characteristics could be used as a basis

for predicting the best model.

The analysis began by using selected models to

concurrently estimate development costs for 25 known

projects. "tielestimates from each model were compared and

the most accurate model for each project was identified. The

projects were assigned to the group of projects for which

each model most accurately estimated development costs., The

groups were given the names of the respective models: PRICE

S, SLIM, COCOMO, and JENSEN.

cAfter grouping each project, discriminant analysis was

used to identify those input variables from all the

estimating models that best discriminated between the

groups. The identified input variables were then used as

determinant variables as a basis to predict which model was

most likely to best estimate cost for each project. The

unbiased prediction rate was 60%. Despite the high prediction

vii

L V

Sthe oerall estimating accuracy was not
reduced The

criteria statistic, relative root mean _!."areerOrr, RRMSE,

for the estimates sulectex-b~l'-d
r icrimin ant analysis was not

signific.Mt4-yb,-tter than the RRMSE for the expected error.

The r;esu, ts indicatthat "*)use of the pre-analysis

determinants to select a model would not reduce estimating

error more than a random selection of models.

viii

AN APPLICATION OF DISCRIMINANT ANALYSIS TO THE

SELECTION OF SOFTWARE COST ESTIMATING MODELS

1. Introduction

Justification

Skyrocketing software costs show no indication of

subsiding. In 1980, 40 billion dollars were spent on

software in the United States (about 2Z of the GNP).

Projected growth for 1985 and 1990 is to 8.5%. of the GNP and

13. of the GNP respectively (1:3). Unfortunately, software

cost estimating capabilities did not develop adequately as

the industry expanded. Current cost models rate well if they

predict within 20% of the actual cost in 70% of their cases

(3:32). Two reasons can be offered to explain the difficulty

in estimating software costs. The first reason, a temporary

one, will eventually pass with time. Software development

engineering is a relatively new discipline and historical

data bases for cost estimating are almost nonexistent

(36t:1-5). The second reason for estimating difficulty in

software lies in the nature of the commodity itself, and it

will not diminish with time. Unlike most products for sale,

software is not a material good. Instead, software

represents the ideas from the mind of a computer programmer.

Nebulous products, such as ideas, resist specific

quantification, measurement and cost prediction. The result

of this resistance to quantification and measurement has had

detrimental effects on Air Force research and development

efforts.

In addition to the constantly rising cost for
software developments software reliability,
unresponsiveness, and indirect costs associated
with slippages in software developments are of
major concern to the USAF. (16:1)

Problem Statement

Numerous software cost estimating models are currently

available and each has experienced some degree of success in

estimating costs for software (1:3). There is not, however, a

tool to help cost analysts select the best cost estimating

model for their particular software project. Generally, cost

analysts currently depend on one cost model to predict all

software costs. In the cases when more than one model is

available, no method exists to indicate which model's

prediction may be more accurate. This forces the analyst to

heuristically decide whether to develop a composite forecast

incorporating all the outputs from the available models or to

favor one estimate because of the models' past performance.

A good example of the latter exists at Electronic System

Division (ESD). Captain Joe Dean, the chief software cost

analyst at ESD, tends to favor the results of one particular

model when estimating the software development costs for

embedded avionics (6). He bases his choice on favorable past

!2

-- - -

experiences with that model. An empirical method for

selecting the best cost model could improve the cumulative

accuracy of all the estimates. This supposition follows

naturally from the conclusions of several comparative studies

(71 8; 221 36; 37). Each of these utudies concluded that both

the environment in which the software is designed to operate

and the environment in which the cost model was developed

significantly affect the relative estimating performances of

the models tested. Randall W. Jensen made a similar comment

in a recent article on software cost estimating.

There are few model comparisons available
which allow the user to judiciously select the
estimation model best suited to a specific project
type or organizational approach. (19:97)

A cost model developed from embedded avionics software

data would tend to return more consistent cost predictions

for embedded avionics applications. Additionally, the

studies also indicated that across a range of software

environments, the accuracy for each cost model was

inconsistent, even for the most accurate cost models. In one

case, the model with the most accurate cost prediction in two

software environment categories was the worst estimator in

the third environment (36:5-27). None of the comparison

studies established the consistency of the cost models'

accuracy as a function of software environment. But

potentially, the ability to select the most accurate cost

model could eliminate the outlier cost predictions and

3

L - ',Vm ml

significantly improve overall software estimating results.

The analyst could then select the best model based on

software program characteristics and would not be forced to

average estimates or rely on intuition. This technique would

combine the strengths and minimize the weaknesses of the

current state-of-the-art software cost estimating models.

Scooe of Research Effort

This research effort will limit its investigation to

cost models which would be the best candidates for estimating

development costs at Aeronautical System Division (ASD).

Development schedule and support costs will not be

addressed. Two criteria were used to select the models.

First, the model must already be in use within the Air Force

for software cost analysis. And second, the model must have

a good record of accuracy with its Air Force users. The four

models which best fit these criteria are: RCA PRICE S, a

proprietary software model based in New Jersey (2P);

Constructive Cost Model (COCOMO), a non-proprietary software

model developed by Dr. Barry Boehm (3); Putnam SLIM (SLIM), a

proprietary software model developed by Lawrence Putnam (28);

and the Jensen Model, developed by Randall Jensen (18).

Three questions will be addressed in the research.

1. Do software development cost estimating models accuracy

correlate to any specific software characteristics?

2. Which determinants best differentiate software

4

characteristics and can they be used by analysts to

select the cost model which will return the most

accurate estimate?

3. Will this ability to predict the most accurate cost

model significantly improve software cost estimating?

Hzpthibs

The need exists for a quantitative method of selecting

the estimating model best suited for a particular situation.

Through the use of pre-analysis determinants it will be

possible to determine the software characteristics that

correlate to the estimation accuracy of the tested models.

Furthermore, this technique will reduce the total estimating

error by selecting the estimating model most likely to

provide the most accurate cost estimate.

54

II. Literature Review

Three topics will be covered in the literature review.

First, a brief review will be made of the literature which

substantiates the current software cost estimation problem.

Second, those studies which have compared software cost

estimating models will be reviewed. Finally, justification

will be made for the models selected for this thesis.

Problem Justification

The importance of software cost estimating has increased

as software costs have increased (14:1018). The Department of

Defense estimates that by 1990, 85. of the budget spent on

computer related acquisitions will be spent on software

(23:5-S). However, within this area of increasing importance

rampant cost overruns are not unusual. In his thesis, Capt

Devenny related how the U.S. Air Force command-and-control

software project had four changes in its estimate of cost.

The final cost was ten times the original contractor's 'best

estimate" (7:19). Accurate cost estimates can and should be

the critical element for software development efforts by

enabling acquisition managers to properly allocate time and

resources for software (33M1). Numerous other examples of

cost overruns, schedule slippage% and cancelled programs have

been associated with poor software cost predictions. Cost

model developers have concluded that despite the progress

6

made to date, a need for more accurate cost estimating

results continues to exist within the software industry

(34s18 14:1018; 367-2). The state-of-the-art of software

cost estimating currently is only mediocre. The best

software cost estimating models are only within 20% of the

actual, and they do that in only 70% of their predictions

(3:32). Why are software costs difficult to consistently

predict?

A common reason identified in the literature for

software cost inconsistency is the diversity inherent to

software (3332). This diversity comes from two sources.

First, software can be remarkably different in its

application and internal structure. For example, the type of

software needed to perform accounting calculations varies

greatly from the software needed to control the flight of the

Space Shuttle. The second source of software diversity is the

environment in which the software can be developed. A few

examples of software environment are software engineering

methods, supporting software, type of computer used and type

of contract (36:5-27). Because of Its two-fold diversity

software presents a difficult commodity to estimate.

Isolating the most critical cost factors can be a difficult

task. Ninety-six cost drivers for software were enumerated

in one study (25), and 53 in another (15). With the potential

variations so Immense, Bailey and Basili questioned If one

model could hope to cover all the possible combinations

(2.107). Thibodeau essentially Indicated the same idea when

7

he concluded that no one software cost estimating model met

U.S. Air Force requirements for accuracy. Thibodeau stated

further that Othis finding indicates the necessity of

learning the specific attributes of a development environment

that determine when one or another model structure should be

used." (36:5-27)

Rather than follow Thibodeau's advice, many software

cost estimating model developers tried another tactic to

improve estimations. Several developers combined two or more

existing models in an attempt to manage the diversity in

software. (21 4; 81 21; 31; 35). The logic of combining cost

models is appealing. Theoretically, the product of this

process would have the best features of each of the

individual models. The literature does not, however, include

any empirical data to indicate the combined models have

improved cost estimating abilities. In two attempts to

combine models more complexity resulted rather than improved

handling of diversity. The combined estimating models became

too complex for routine cost estimations and consequently

their use was discontinued (41 5; 31).

This thesis will not attempt to combine models; instead,

it will follow the direction indicated by Thibodeau. This

effort will seek *to determine when one or another model

should be usedO. The research will then be taken one step

further. Pre-analysis determinants will be used to predict

the model whic" will make the most accurate cost estimate for

the software under consideration. These determinants should

9

V

allow the analyst to improve model selection, and reduce the

total cost estimating error. Before beginning the

methodology, it will be instructive to first review those

studies In the literature which have compared software cost

estimating models.

Review of Model Comparison Studies

Literature on software cost estimating models per se can

be found in abundance. This proliferation of analysis and

cement stems from the substantial concern the topic

warrants, especially within the defense industry. Most

studies on the topic of software cost estimating spend at

least some time reviewing other cost estimating models.

Because ample descriptions and illustrated uses of popular

cost models abound in the literature, this review will not

needlessly repeat what has been done elsewhere. Instead,

this review will concentrate on studies that compare software

cost estimating models. Comparison studies can be classified

into two categoriest qualitative word studies and

quantitative empirical studies.

Qualitative Comparisons. The qualitative word

comparisons of software cost estimating models primarily

sought to inform the reader about the characteristics of the

cost models available. General overviews of available cost

models can prove to be quite helpful to orient readers

concerning the current state-of-the-art in software cost

9

Imlmm N ,

estimating. Boehm (3) and James (15) cover most of the

popular models and provide a cursory look at each model and

the underlying methodology used to develop each. Boehm

cements expertly on the strengths and weaknesses of each

model reflecting his extensive background within the software

development industry. He did not comnent on the Jensen model

used In this study because it had not been published at the

time Boehm's work was printed. Included in Boehm's book (3)

and Dirck's article (8) are two helpful tables concisely

diagraming the input parameters for each of the models

covered in their text. The tables list the range of input

factors that the cost estimating models use to estimate the

cost of software. In addition to listing input factors,

several studies delved deeper and included evaluations of

both input factors and output factors (7; 24; 30). These

studies critically compared the usability of input factors

and the utility of output factors with respect to user

requirements. Both informative and thought provoking, the

qualitative word studies adequately provided conceptual

comparisons of the cost models. But a prospective cost model

user can also use empirical data to compare the accuracy of

existing models. This type of research was done In the

quantitative comparison studies.

Quantitative Comparisons: McCallma. Two articles

reported empirical results from comparisons of software cost

estimating models: McCallm and Thibodeau (221 36). McCallam

compared three models' ability to estimate software costs by

10

using them to predict cost for a single software program.

After describing the software program that each model

estimated, McCallam detailed how each model was calibrated

and used to estimate the cost. He specifically selected the

three models because of their contrasting methodologies and

input variables. The first model was a top down software

sizing model which the author co-developed with another

researcher. The second and third models are well know

proprietary models (SLIM and RCA PRICE S). After explaining

each of the input parameters, McCallam calculated the bottom

line for cost and expressed it in manmonths, a commonly used

expression of software cost which readily permits comparison

of model accuracy. The results from each model were compared

to an inhouse estimate from the developers of the software

program. The results proved interesting: all three models

predicted costs within three percent of the in-house

estimate. Those are surprisingly accurate results. McCallam

pointed out the advantage of using more than one model to

predict costs for software and stated further that the more

diverse output of information from the three models could aid

in managing the software development. However, an obvious

problem was not addressed. What should the analyst do if the

three models do not estimate the costs to be approximately

equal? It would be left up to the analyst to determine which

estimate to favor. Because only one program was estimated,

the results from this study cannot be relied on as Indicative

for other types of software. The second empirical study

11

(J

sought to provide more transferable results by using several

types of software in its comparison.

Quantitative Comparisonss Thibodeau. Thibodeau

conducted a detailed empirical comparison of nine software

cost estimating models evaluating their potential for use by

the United States Air Force (36). That research effort

constitutes the most extensive and rigorous comparison of

software estimating models in the literature. Two portions

of that study will be reviewedt model definition and

evaluation.

The first portion of the Thibodeau report, model

definition, resembles the type of qualitative word

comparisons conducted by other studies. The model

definitions consisted of three parts: description, definition

of input/output variables, and classification. In describing

the models Thibodeau repeated in his study the most common

complaint of the other software cost estimating studies.

That is, with only a few exceptions, cost estimating models

lack sufficient documentation to adequately explain what

specific aspects of software development efforts are

considered and predicted by their models. In some cases the

researchers were required to contact the software model

developers in order to fully understand and explain how and

what the cost estimating models specifically included in

their predictions of software costs. This background was

essential to ensure that the models were compatible with the

government's requirements for sufficient comprehensiveness.

12

For example, considerable discussion was devoted to the model

output compatibility with both the phases of defense

acquisition (conception, validation, and full scale

development) and levels of the Work Breakdown Structure. In

addition to the description of the models, Thibodeau

classified each into categories according to their underlying

method of evaluation. The three classifications of software

cost estimating models were regression, heuristic, and

phenomenological. Predictably, the regression models derive

their estimates from linear and non-linear regression

techniques; the heuristic models utilize both regression,

interpretation and supposition; and the phenomenological

model (only the SLIM Model fit this classification)

incorporates a concept which is not limited to describing the

mechanics of software development (36:4-16). The

phenomenological concept, learning rate, assumes the rate

which programers learns is constant. After thoroughly

defining the models, Thibodeau began the most unique part of

his study, an empirical evaluation and comparison of the

models.

The evaluation had two important portions. use of data

and findings. In the first portion, Thibodeau used data

representing three different types of software. The types of

software represented were commercial data management,

groundbased satellite support, and United States Air Force

data management. The second Important portion of the

evaluation was the findings. Although nothing came out of

13

U'I

the Thibodeau study that was not already in the literature,

the findings are important because they empirically verified

the suppositions posed by other software cost model

researchers. The highlights of the findings follow. 1)

Calibration of the mode) to the data set substantially

affects the accuracy of the results. 2) The development

environment significantly affects the relative performance of

the cost estimating models. 3) Lack of good data on software

development limits the ability to create and evaluate

software estimating models. 4) No models currently available

adequately predict cost for software. The first and fourth

of these findings point toward the work proposed in this

thesis. Software cost estimating needs to be improved; and

the environment significantly affects model performance.

Developing pre-analysis determinants to select the best model

should strengthen both of these weaknesses.

Model Selection

The models used in this effort were chosen because they

were the best candidates for use in ASD. Two criteria were

used to evaluate the available models. First, the model

should currently be used within the U.S. Air Force for

software acquisition. Second, the model should have a strong

record for software cost estimating.

The first criteria, requiring the software cost

estimating model to be used within the Air Force, ensures

14

V ~/

that all models used will be compatible with the defense

acquisition process. It is not a serious limitation that

this criteria may eliminate some currently unknown models.

The purpose of this effort is not to exhaustively present the

options available for software cost estimations; instead, the

purpose is to indicate a technique which will improve the use

of the models currently available.

The second criteria, requiring that the models have a

strong record, is self-explanatory. More can be gained by

combining the strengths of the more effective models than can

be gained from combining the strengths of the less effective

ones.

Four models fit within these criteria: RCA PRICE S (RCA)

(29), Constructive Cost Model (COCOMO) (3), SLIM (28), and

Jensen (19). Interviews with a cost analyst from each of the

four product divisions within the Air Force System Command,

(Aeronautical System Division, Electronic System Division,

Space Division and Armament Division) established the

selected models as those most often used and those most

accurate in past performances.(5; 11; 20; 32). Major Joe

Duquette, the cost analyst on the Air Staff responsible for

software cost estimatingp also confirmed that the four models

selected for this project were the best candidates for a

comparison study.

15

• M w

III. Methodology

The methodology followed a three step process. The first

step used all four software cost estimating models to estimate

costs on twenty-five known software projects. Each project was

assigned to a group, depending on which model most accurately

estimated its development cost. In the second step,

discriminant analysis was used to identify characteristics of

the software projects which correlate to the models and the

projects they most accurately estimated. The final step

evaluated the success of pre-analysis determinants to reduce

estimating error in software cost estimating.

Cost Estimating Procedure

In the cost estimating procedure, input variables from the

four selected models were derived from information on the

twenty-five know software projects. Descriptions of the four

estimating models along with the input data can be found in

Appendices B and C respectively. In addition to the back-

ground information found in the appendices two areas need

clarification regarding the testing procedure. The first area

involves the methods used to standardize the models' inputs and

outputs to enable comparisons. The second area pertains to the

test data sets used in the research. The types and sources of

the test data sets are described in the second section.

16

. n I iu eno ,- " ! .. lmi ""

Data Set and Estimatino Model Definitions. Lack of

quality data plagues software cost model development

(12s175). Data often fails to consistently reflect the

assumed attribute. Size and development are two such

parameters whose meaning can vary.

Measurements of program size vary considerably. Common

examples of these include: lines of delivered source

instructions (3:58), number of source statements, and lines

of object code (36:4-5). Confusion can arise if the size

measurement variable is not correctly identified for the

particular model being used. In this research, a conversion

factor was used for projects 13-25 to convert lines of source

code into lines of object code for use in PRICE S. The

translation equation from the PRICE S Users Manual

(29:111-25) was used with a slight modification. Based on

the experience and advice of Captain Joe Dean, Electronic

System Division (ESD) Software Cost Analyst, the expansion

factor used in this research was EF = C(EXP-1) / 21 + 1,

where EF is the expansion factor used in this study, and EXP

is the expansion factor listed in the PRICE S User's Manual.

Another important factor needing explanation is

development cost. Comparing the cost in dollars causes

problems because of the time value of money, Inflation rate

and other monetary problems. For that reason, the comparison

variable used In this research will be the amount of

development effort required, not dollar cost. The effort

17

measurement will be In man-months (152 man-hours). PRICE S's

outputs in dollars were translated Into man-months for

projects 13-25 using the conversion of one man-month equal to

$8,750.00. This conversion factor was recommended by Mr. Earl

King, RCA PRICE Customer Relations.

Test Data Set. The data used in this study came from

two sources. The first twelve projects came from the

Thibodeau report (36). Projects I through 6 were ground-based

satellite support projects. Projects 7 and 8 were Air Force

Data Systems Design Center projects developed for payroll and

logistical applications. Projects 9 through 12 were

commercial data base management system projects. The

Thibodeau study only provided input variables and estimates

for PRICE S and SLIM. Input variables on the first twelve

projects for COCOO and the JENSEN model were derived from

the inputs listed in the Thibodeau report for SLIM and PRICE

S.

The second source of data, projects 13-25, came from an

unpublished report by The Analytical Science Corporation

(TASC). On contract with ESD, TASC collected data on

twenty-eight projects using the methodology from a recent

data collection study done by the Mitre Corporation (8),

called Software Acquisition Resource Expenditure (SARE). 'The

study recommends a format and identifies the factors needcid

to effectively capture critical software cost drivers. The

SARE methodology provides uniform data gathering and of

parallel input variables needed for cost model comparisons.

18[

)V

Data on some projects collected by TASC contained omissions

on development schedule and other Key variables. These

omissions prevented the use of fifteen of the projects in

this study. Additionally, because of the missing schedule

information there was no way to calibrate the models

uniformly. To standardize the model estimates each model was

required to internally calculate any variable normally

provided through a calibration process. The only exception

to this rule was the variable RESO for PRICE S. On the advice

of Mr. Earl King of RCA, RESO was set at 3.3, the defense

industry average. Where minor omissions occurred in the

thirteen projects used from the TASC report, the default or

nominal value was used to minimize to adverse effects on the

estimate.

After the four cost models were used to estimate costs

for the twenty-five known software data inputs, the results

were used in the second step of the methodology, discriminant

analysis.

Discriminant Analysis

The discussion of discriminant analysis will include

four topics. Following a brief description of discriminant

analysis, Its Inputs and outputs will be discussed. Finally,

the criteria used to select the pre-analysis determinants

will be offered.

19
-- -. *

Description of Discriminant Analysis. Because

discriminant analysis is not often linked to comparisons of

software cost estimating models, a brief description of its

function in this research will be given. The discriminant

analysis programs used in this research were from the

Statistical Package for the Social Sciences (SPSS)(26> and

the Bio-Medical Decision Package (BMDP)(9). A more complete

description of the statistical background of discriminant

analysis can be found in Appendix A.

Functionally, discriminant analysis attempts "to

statistically distinguish between two or more groups of

cases' (26:435). * To distinguish between the groups the

researcher selects a collection of discriminating variables

that measure characteristices on which the groups are

expected to differ" (26:435). All of these discriminating

variables can be entered as potential discriminators. The

program statistically evaluates each of the variables

according to their ability to discriminate between the groups

(26:435). In this study, the statistic called Mahalonobis D

will be used to evaluate each variables discriminating

ability. The Mahalonobis D is reflected by the F-to-enter

value (26:447). After selecting the variables to be included

in the discriminant function it can be determined what

percent of the software projects could have been correctly

classified (26:436). The variables included in the equation

will be the pre-analysis determinants. Based on the values

of the variables, a prediction can be made as to which group

20

-| .--------

a particular software project belongs (26:445).

Discriminant Analysis Inputs. The inputs for the

discriminant analysis will include both the inputs and the

outputs of the first research step. The twenty-five software

projects evaluated by the selected cost models will be

categorized into four groups: COCOMO, PRICE S, JENSEN and

SLIM. Each group will contain the software projects for which

each respective cost model most accurately estimated

development cost. The discriminant variables used for the

analysis, will include the input variables used by all the

cost models to derive the original estimates. This procedure

will ensure that the same information already gathered to

perform cost estimates can also be used to predict the most

accurate cost model. Logically, the most relevant cost

drivers would be among the factors used to estimate costs.

These same factors should be the best discriminators to

predict the most accurate software cost model for each

software project. With this input, the discriminant analysis

program will provide the necessary output for predicting the

most accurate model.

Discriminant Analysis OutDuts. The output from the

discriminant analysis will include: 1) the discriminating

variables most effective in predicting the most accurate cost

model for each software project; 2) a discriminant function

which, based on the discriminant variables, will maximize the

ability to discriminate between the groups; 3) a

classification function which will classify each case into a

21

V -, *

model group based on the values of the discriminant variables

and 4) the percent of cases correctly classified. All four

outputs will be used in an iterative process to select the

final variables used as pre-analysis determinants in the

final set of discriminant functions.

Selection Criteria for the Discriminant Variables. The

combination of discriminant variables selected will the ones

whose classification function is most accurate and stable.

The accuracy will be measured by the percent of the known

projects correctly classified by the classification

function. The stability will be measured by the difference

between the jackknifed and unjackknifed classification

score. The jackknifed and unjackknifed classification

methods require further explanation.

The Unjackknifed method of classification produces a

biased classification score. The biased or unjackknifed

method, calculates the discriminant function using all

twenty-five projects. The bias occurs because the

discriminating function contains information about the

specific case it is attempting to classify. The resulting

unjackknifed score is overly optimistic. The second method

of classification reduces this problem (9:711).

The unbiased classification method jackknifes the data to

reduce the bias in the classifying process. In the jackknifed

method, the project being classified is removed from the data

set and the remaining 24 projects are used to calculate the

discriminant and classification functions (9:731). The project

22

... - 0. .-

in question is then classified with a function without

information from the case being classified. The jackknifed

method produces a different set of discriminant and

classification functions for each project classified. This

produces a problem when the jackknifed and unjackknifed

classfication scores differ considerably.

When the unjackknifed score is considerably higher than

the jackknifed score, the discriminant function is considered

to be unstable. This instability usually results from the

discriminant function chasing random error in its attempt to

differentiate between the groups. In those cases, the

discriminant function changes erratically as individual cases

are removed from the data. Only one set of discrimininant

functions can be used for predictive analysis. Because the

jackknifed method produces many discriminant and

classification functions, the unjackknifed function is used

as an approximation of the twenty-five jackknifed functions.

The assumption of similarity between the jackknifed and

unjackknifed functions is lost when the discriminant

functions appear unstable.

The combination of discriminant variables will be

selected that demonstrates the greatest accuracy and

stability. It will be the combination that has the highest

jackknifed classification score, and that appears to be the

most stable.

23

Success Criteria

Two measures were used to report the success of the

pre-analysis determinant technique. The first measure Is the

number of times the most accurate software cost estimating

model was chosen for each of the software projects. This

measure is reported in a straight percentage.

The second measure more functionally measures the

success of the selection technique. The total performance

for each model will be calculated by using the Relative Root

Mean Square Error (RRMSE). The RRMSE was used in the

Thibodeau (36) empirical comparison because it penalizes for

extremely poor estimates. The measure is computed as

fo1 lows:

RRMSE 1 Cl/N X (ACT i - ESTi) 2 31/ 2 (1)

I/N(ACT i)

Where

ACT i - The measured size of the ith
project in the sample set;

ESTi , The estimated size of the
ith project;

N - The number of projects in
the sample.

The RRMSE is also called the coefficient of variation

(Sy/7) and measures the relative variability of the

distribution around the mean. It was calculated for all of

the estimates which the pre-analysis discrimination predicted

to be most accurate. To compare the discriminated

24

1. performance to a random selection process the mean absolute

deviation (MAD) was calculated for each project estimate.

The MAD was calculated for each project by summing !ACT-EST:

for the four estimates of each project and dividing by four.

The RWISE(Random) expresses the RRMSE an analyst could expect

if estimates from the four models were selected at random.

Comparing the RRMSE(Discriminated) to the RRMSE(Random)

reveals the improvement in estimating error the pre-analysis

determinants produced. A further comparison of the RRMSE

(Discriminated) with each of the models' RRMSE indicated the

potential for discrimination to improve accuracy over any one

estimating model.

25

IV. Findinos And Analysis

The search for determinant variables proved fruitful.

Four software model input variables were statistically

capable of discriminating between the members of the model

groups. However, despite the ability to select the most

accurate model in a majority of the cases, the technique of

using pre-analysis determinants did not improve overall

estimating accuracy. The presentation and analysis of the

results will begin with the steps used to select the

determinants. An analysis of the resulting discriminant

function will follow along with an interpretation of the

classification functions.

Selection of the Determinants

Selection of the determinants involved the discriminant

analysis programs from both the Statistical Package for

Social Sciences (SPSS)(26:434-467) and the Bio-+ledical

Decision Package (BlDP)(9:519-537). This discussion will

assume a basic understanding of discriminant analysis. More

background information on discriminant analysis techniques is

in Appendix A.

The stepwise method in 9IDP was used to select the most

discriminanting variables. The stepwise process begins with

no variables in the discriminant function and tests each

variable to determine which one has the most discriminating

26

L7S

power. The discriminating power, or the statistical ability

of the variable to explain the variation between the groups,

was expressed by the F-to-enter calculated for each

variable. The larger the F value, the greater the

discriminating power of the variable. On the first step, the

analysis selected the variable with the largest F. On the

second step, a new F-to-enter was calculated based on the

ability of the remaining variables to explain the variation

between the groups, given that the first variable was in the

equation.

In the process of selecting variables with the highest

F-to-enter value, three variables with high F values were

initially excluded from selection: RESO, HOST, and TURN. RESO

comes from PRICE S and stands for resource. HOST comes from

the Jensen Model and represents the difficulty in converting

from the host development computer to the target computer.

TURN comes from COCOMO, and reflects the time from computer

programmer initial input to hardcopy turnaround. These

variables were statistically significant initially. However,

their actual values were predominantly unknown, and default

or nominal values had been substituted in their place.

Attempting to characterize a software project for group

discrimination with a default value would be meaningless.

While statistically significant for discrimination, these

three variables contained no Information about the software

project's characteristics. RESO, HOST and TURN eventually

became insignificant as other variables were entered into the

27 --9ju fl

function. Apparently, the variation explained by RESO, HOST

and TURN could also be explained by other variables.

Table I summarizes the variables as they were included.

As indicated, various combinations of the more discriminating

variables were tried to discover the most effective

combination.

The variables chosen as determinants were CPLX, TECHFTR,

UTIL and RELY. CPLX and RELY come from COCOMO, TECHFTR comes

from SLIM and UTIL comes from PRICE S. This particular

combination produced the best classification results with the

fewest variables. When PLTFM was included, the

classification score remained unimproved. Although ACAP

improved the unjackkifed score, because the jackknifed score

decreased, the discriminant function was much less unstable.

All of the final four selected variables CPLX, TECHFTR,

UTIL and RELY reflect some component of complexity or

increasing difficulty with respect to software development.

CPLX and TECHFTR measure the application complexity for their

respective models. UTIL indicates the percent that the

software project utilizes of the memory and or time

constraints of the target computer. As UTIL increases from

.6 to 1.0, the effort required to develop the software

increases exponentially.

28

TABLE I

Summary of Stepwise Classification Scores

Correct Classification Scores
I n clude d
Variables Unjackknifed Jackknifed

CPLX 20Y. 207.

CPLX,TECHFTR 56%. 44%.

CPLX,TECHFTR,PLTFM 56% 44%

CPLX,TECHFTRRELY 60% 44%

CPLX,TECHFTR,ACAP,PLTFM 64% 52%

CPLX,TECHFTR,RELYUTIL 64% 60%

CPLX,TECHFTR,RELY,UTIL, 64% 60%
PLTFM

CPLX,TECHFTRRELY,UTIL, 68% 52%1
ACAP

Variable Model *Variable Description

CPLX COCOMO complexity of the software
TECHFTR SLIM technical factor
UTIL PRICE utilitization of computer memory
RELY COCOMO reliablity of the software
PLTFM PRICE platform
ACAP JENSEN analyst's capability

*Appendix B has a more detailed description

RELY reflects the degree of reliability required of the

software. The highest value of RELY is assigned to software

whose failure could jeopardize human life. Lower values of

RELY reflect software whose failure will only be a minor

Inconvenience. The four determinants measured similar

characteristics of the software projects.

29

Interpretation of the Discriminant Function

A pattern was discovered in the mean values for the

variables within each group as seen in Table II.

TABLE II

Mean Values for Variables by Model-Group

UTIL CPLX RELY TECHFTR

PRICE .650 1.13 1.05 9.17

COCOMO .667 1.25 1.32 10.67

SLIM .700 1.21 1.20 8.00

JENSEN .600 1.08 1.05 8.25

For each of the variables, except TECHFTR, the higher values

indicate more complex, or effort intensive software

characteristics. TECHFTR has lower values for more complex

software. Each group shows a general trend in the relative

levels of complexity. Table III illustrates this point.

TABLE III

Relative Levels of Complexity by Model-Group

UTIL CPLX RELY TECHFTR

Most complex, SLIM COCOMO COCOMO SLIM
effort intensive

COCOMO SLIM SLIM JENSEN

PRICE PRICE PRICE PRICE
Least complex,
effort intensive JENSEN JENSEN JENSEN COCOMO

30

The JENSEN group had the lowest mean values in three of the

four variables (UTIL, RELY and TECHFTR). COCOMO projects

tended to have relatively higher effort intensive values in

three of the four variables (UTIL, RELY and TECHFTR). Both of

these groups showed exactly the opposite tendancies for the

CPLX variable. For CPLX, the projects that COCOMO most

accurately estimated tended to have values reflecting

relatively lower levels of intensity while and Jensen

projects had determinant values relatively higher in

complexity. Both SLIM and PRICE S tended to estimate

projects most accurately that had determinate values

relatively in the middle.

Based on the values of the variable means by groups, two

discriminant function showed statistical significance.

Together these two functions accounted for 98.8% of the

explained variance. Further analysis will be restricted to

the first two functions. Table IV shows the value of the

group centroids.

TABLE IV

Group Centroids

Func I Func 2

PRICE -0.49 -0.34
COCOMO 1.32 1.47
SLIM 0.55 -0.39
JENSEN -1.90 0.56

The group centroids show the proximity and relative

position of the group means. Figure I is a plot of the group

31

centroids. Function 1 is on the X-axis, with Function 2 or

the Y-axis.

Func 2
C

+1

J

- . .1 .. +2_.Func 1

P
S

P - PRICE
J - JENSEN
C - COCOMO
S - SLIM

Figure 1. Plot of Group Centroids

Function I accounts for 69.7% of the explained variation and

Function 2 accounts for 29.1% of the variation. Figure 1

reflects the proximity of PRICE and SLIM as well as the

dispersion between COCOMO and the JENSEN model.

Further information can be gained by analyzing the

discriminant function coefficients. The standardized

coefficients reveal the relative magnitude of influence each

variable has in discrimination. Table V shows the

standardized and unstandardized discriminant coefficients.

The absolute value of the standardized coefficients reveal

the relative contribution each variable makes to the -

discrimination function. For example, CPLX contributes

32

-~ S -

nearly twice as much discriminating ability than any one of

the other variables in both Function One and Function Two.

This would indicate that the relative estimating performance

of the models is most strongly influenced by the value of

CPLX for the softare being estimated.

TABLE V

Canonical Discriminant Function Coefficients

Standardized Unstandardized

Func I Func 2 Func I Func 2

CPLX 2.06 -2.04 18.63 -18.46
RELY -0.90 3.46 -3.86 14.88
UTIL 0.81 -0.99 0.54 - 0.66
TECHFTR 1.25 1.06 0.26 0.22

(constant) -23.35 7.00

The unstandardized coefficients are useful to calculate the

group centroids from the raw data. This can be done by

multiplying the unstandardized coefficients by the raw data

and adding the constant.

Analysis of the Classification Function

From the discriminant function a classification function

is derived which can be used to classify software projects.

The discriminating performance of the four selected variables

will be evaluated in two ways. First, the results of the

correct classifications will be ennumerated and analyzed.

And second, the relative root mean squared error (RRMSE) for

33

each software cost estimating model will be compared to the

combined RRSME of the cases selected by the discriminant

function.

The classification function with CPLX, TECHFTR9 RELY and

UTIL correctly classified 60% of the projects using the

jackknife method. Table VI indicates how the function

classified each of the cases.

Two points can be made based on the results in Table VI.

First, the primary errors in classifications occurred between

PRICE-SLIM substitutions. Of the the 10 incorrect

classifications, only four (projects 5,7,9, and 19) were not

PRICE-SLIM. This frequent substitution error can be explained

by the proximity of the group centroids for those models.

The second point comes from the last column in Table V.

In the ten cases which were misclassified, the actual model

was not rated a strong second. In fact, in seven of the ten

misclassifications, the actual model received no better than

10% probability of being the correct model. In the ten cases

of misclassification, eight of the selected models provided

either the worst or second worst estimates. This tendancy

explains why a 60% classification score was unable to

significantly decrease the overall error. Table VII displays

the relative root mean square and the average percent error.

34

•

I
TABLE VI

Jackknifed Classification Performance

Case Actual First Prob 2nd Prob Prob of
Model Choice Choice Actual

1 SLIM SLIM .454 PRICE .272
2 SLIM SLIM .454 PRICE .272
3 SLIM SLIM .454 PRICE .272
4 SLIM SLIM .454 PRICE .272
5 COCOMO * SLIM .646 PRICE .331 .008
6 PRICE * SLIM .597 COCOMO .300 .097
7 PRICE * JENSEN .999 PRICE .001 .001
8 JENSEN JENSEN .893 PRICE .103
9 JENSEN * PRICE .752 SLIM .218 .015

10 PRICE PRICE .519 JENSEN .270
11 SLIM * PRICE .665 JENSEN .270 .065
12 PRICE PRICE .519 JENSEN .270
13 SLIM * PRICE .304 JENSEN .037 .188
14 JENSEN JENSEN .553 PRICE .349
15 JENSEN JENSEN .729 PRICE .759
16 SLIM * PRICE .757 SLIM .206 .206
17 SLIM SLIM .552 COCOMO .366
18 COCOMO COCOMO .913 SLIM .066
19 SLIM * COCOMO .978 SLIM .012 .012
20 COCOMO COCOMO .952 SLIM .039
21 SLIM SLIM .652 PRICE .335
22 PRICE * SLIM .811 COCOMO .097 .087
23 PRICE * SLIM .824 PRICE .142 .142
24 SLIM SLIM .530 PRICE .424
25 SLIM SLIM .530 PRICE .424

* indicates an incorrect classification

SUMMtARY

Model Percent Number of Cases Classified Into Group
Group Correct

PRICE COCOMO SLIM JENSEN

PRICE 33.0 2 0 3 1
COCOMO 66.7 0 2 1 0
SLIM 66.7 3 1 8 0
JENSEN 75.0 1 0 0 3

35

TABLE VII

Comparison of Overall ErrorL PRICE COCOMO SLIM JENSEN DISCRIM RANDOM

RRMSE 0.95 1.36 1.01 1.26 1.03 1.06

Table VII shows that despite the 60% classification

score, the discriminant function has a RRMSE larger than both

PRICE S and SLIM. Furthermore, RRMSE for the expected error

was only slightly greater than the RRMSE for the discriminant

function. These results indicate that the use of

pre-analysis determinants did not improve overall estimating

capability for the 25 projects used in this study. For the

data at hand, an analyst could have had less overall error by

using only PRICE S or SLIM. Because the RRMSE(Random) was not

significantly larger than RRMSE(Discriminant), it would be

just as accurate to randomly select a model as it would to

use the given discriminant function to select a model.

Because the determinants were able correctly classify a

majority of the cases indicates that a statistical

relationship was discovered between the values of the

determinants and the model which most accurately estimated

costs for that project. However, the inability to reduce

overall estimating error functionally disqualifies the

currert application of the discriminant technique.

In retrospect, the problem appears to have been in the

original project groupings. The members of each model group

were assigned based on the single most accurate estimate,

36

-. .1*

irregardless of the magnitude of error. The resulting

discriminant function ignored the magnitude of error in

determining the group classifications as well. This point

will be covered more fully in the conclusions.

37

i V -. -

V. Conclusions and Recommendations

The goal of this research effort was to Improve software

development estimations. Even though that goal remains

unfulfilled, Important Knowledge has been gained. The

conclusions will be drawn in light of the three research

questions posed in Chapter One. Following the conclusions

will be a compilation of the factors which proved to be

limitations in this study. And finally, two recommendations

for further study are proposed involving other applications

of determinant analysis and cost estimating model selection.

Conclusions

The introduction listed three research questions which

guided this investigation in pre-analysis determinants.

Those questions will be addressed in turn.

QuestionL1. Do software development cost estimating

models accuracy correlate to any specific software

characteristics?

Statistically, the four models showed a trend with

respect to the four determinant variables: CPLX, TECHFTR,

UTIL, RELY. Sixty percent of the classifications were

correct. PRICE S and SLIM tended to estimate costs that had

relatively intermediate values for the determinant

variables. COCOMO most accurately estimated the cost of

software that tended to have relatively high values for

38

-- AAA

r

TECHFTR, UTIL and RELY and relatively low values for CPLX.

The JENSEN groupd had relatively low values for TECHFTR, UTIL

and RELY and relatively high values for CPLX.

Questin . Which determinants best differentiate

software characteristics and can they be used by analysts to

select the cost model which will return the most accurate

estimate?

The determinants with the most statistical

discriminating power were CPLX, UTIL, RELY and TECHFTR. They

were successful at selecting the appropriate model most of

the time (60).

Question 3. Will this ability to predict the most

accurate cost model significantly improve software cost

estimating?

Under the current application no significant benefit

would result from the use of the determinants. The Relative

Root Mean Square Error (RRMSE) for the predicted estimates

was 1.03 and the RRMSE(Random) was 1.06. These statistics

indicate that a random selection of estimating models would

have produced as much error as the selection of models using

pre-analysis determinants. The results found in this study

are subject several limitations which may have had some

undeterminable effect on the relative estimating accuracy of

the respective software models.

39

mV

Limitations in the Research

Although, the limitations of this study have been

included in Chapter 3 and Appendix B, their ennumeration in

the conclusion lends perspective both to the research results

as well as the recomnendations for further study. All the

limitations in this study can be traced to the need for high

quality, complete data on software development costs. This

problem has been a significant factor in other software

research efforts (12:175, 36:5-20).

The data in this study was all second hand. Access to

the original software developers about questions in the data

was not possible. Interaction with the actual programmers

and developers can be very helpful in insuring the correct

software characteristics are understood. The lack of

interaction also prevented the acquiring of missing input

variables. Where data was missing nominal or default values

were used.

In addition to missing data, the lack of consistent

development schedule information prevented equal calibration

of all the models. PRICE S and SLIM were calibrated for

Projects 1-12. None of the other models or projects were

calibrated. The input variables for Projects 1-12 were

derived for both COCOMO and Jensen based on the data

available from the PRICE S and SLIM input variables for those

projects.

The Information for Projects 13-25 was more complete

40

than for the first twelve. Nevertheless, for PRICE S a

default value of 3.3 was use for RESO. PRICE S also used

conversion factors on projects 13-25 for both the lines of

object code input and the dollars per manmonth output.

The effective study of software estimating model

selection would be improved by more and higher quality data.

Ideally, enough data is needed to calibrate each model for

each software project estimation. Further, the ideal study

would permit interaction between the software developer and

analyst using the estimating models. The perfect research

situation never exists, however a need for quality software

estimating data does exists. The lack of comparable software

data provided limitations in this study. Along with the

addition of more and better data, there are other

recommendations for this study that may prove effective.

Recommendations for Further Study

The results from the data showed no improvement in

software cost estimating through the use of pre-analysis

determinants. Important changes to the methodology used in

this study could potentially improve our overall estimating

ability. Two recommendations are offered for ways to improve

the investigation into pre-analysis determinants.

One area of future study concerns the manner of group

classifications for the software cost estimating models. In

the current study, a software project was classified to the

41

model group that most accurately estimated its development

cost. However, that type of classification does not contain

any information about how accurate the best estimate was nor

does it indicate how accurate the other models estimated the

development effort. Some projects had more than one estimate

within 10% of the actual, nevertheless that project was

assigned to only one group. A form of grouping needs to be

devised to acknowledge the model which came in a close

second.

This problem expressed itself in another way. Some

projects had no estimates within 30%. In those cases, the

projects were identified as most accurate. Classifying in

such an all-or-nothing manner does not properly capture the

information needed to most effectively indentify

determinants. Groupings which more closely represent the

accuracy of each model could improve the ability to predict

the most accurate cost model through pre-analysis

determinants.

A second recommended research area involves inverse

analysis. Rather than trying to classify projects according

the cost model with the most accurate estimate,

classification could be made according to which models had

the worst estimates. An inverse classification need not be a

relative worst estimate. The classification could be for any

model whose estimate deviates by more than specified amount.

This type of investigation would highlight the software

characteristics which cause poor cost estimates.

42

--_., .V., . .

Changes:in the methodsfcasfcto and grouping

characteristics remains to solved.

43

Appendix A: Summary of the Discriminant Analysis

Techniques Used in this Study

To aid those not familiar with discriminant analysis,

methodology background is offered on the procedures and

terminology relevant to this study. Following the background

information on discriminant analysis, the method of variable

selection will be covered.

Background Information on Discriminant Analysis

The background in this section came for the introductory

section on discriminant analysis in the Statistical Package

for the Social Sciences (SPSS)(26). For a more detailed

explanation the reader should refer to the SPSS.

Discriminant analysis allows two or more groups to be

statistically distinguished (26:435). To do this, *the

researcher selects a collection of discriminating variables

that measure characteristics on which the groups are expected

to differ" (26:435). These variables are called determinant

variables. In this study, the groups were the software

projects for which a particular estimating model produced the

most accurate estimate. For example, the SLIM group

contained those software projects for which SLIM estimated

the development costs more accurately than any other model.

The same was true for the PRICE, JENSEN and COCOMO groups.

The software cost estimating model's input variables are

44

theoretically the most significant cost drivers. Because of

their cost estimating relationship with software, it was

assumed that the input variables effectively captured the

software characteristics which could potentially

differentiate between one group and another. In a similar

way, the relative height of a basketball player could be an

effective discriminant variable in differentiating between

the playing positions on a basketball team. In this

research, the input variables became the determinant

variables. Discriminant analysis statistically evaluates

each of the determinant variables for their ability to

discriminate between the groups. The determinant variables

that explain the most variation between the groups are

selected for inclusion in the discriminant function (26:435).

The discriminant function is used to differentiate between

the groups and has the form

D i = diiZ 1 + di 2 Z 2 ... + dipZp

where

Di - the score of the ith discriminant function;

d's = the weighting coefficients;

Z's - the standardized values of the p
discriminating variables.

More than one discriminant function can be formed to describe

the separation between groups. The number of discriminant

functions is limited by the number of groups in the analysis

(26:435). The number of discriminant functions must be no

more than one less than the number of groups. With four

45

software model groups, the maximum number of discriminant

functions is three. The selected variables are standardized,

weighted with coefficients and added together to form the

discriminant score (D). The coefficients are chosen to

minimize the differences between the D's for projects of

similar groups and to maximize the differences between the

D's of members of opposite groups (26:435). The discriminant

functions serve as the basis for both analysis and

classification (26:435).

Analysis of the discriminant function can provide

theoretical insight into the similarities and differences

between groups. For each group the discriminant scores can

be averaged to produce the group mean for that particular

function (26:443). Averaging the groups means from all the

functions produces the group centroid. Close proximity

between the group centroids indicates strong similarities

between the members of the groups.

Each function explains some part of the discrimination

(26:443). How much each function contributes to the total

amount of discrimination can be determined by the percent of

variation attributed to the function. The the percent of

variation for all the functions sums to 100. Within each

function the standardized coefficients reveal how much each

variable contributes to the discriminating power of that

function. Discriminant analysis will also output the

unstandardized coefficients (26:443). The unstandardized

coefficients can be multiplied by the values of the

46

- r-----

respective discriminant variables and summed together. To

adjust for the grand means a constant is added, resulting in

the group mean for that function (26:443). Just as the

discriminant function provides basis to analyze the data, it

also provides the basis to classify the data.

Classification takes place after selecting the variables

which satisfactorily discriminate between cases of known

I group memberships. How the variables are selected for the

discriminant function will be covered in the next section.

Once the variables have been selected for the discriminant

function, a classification function can be produced which

will classify cases into groups based on the values of their

discriminant values (26:445). Thus, the classification

function can be used to check the adequacy of the original

discrimination function and also to classify cases of unknown

group membership (26:436).

How accurately the classification function can assign

each case to a group indicates the strength or adequacy of

the function (26:436). Unfortunately, classifying the same

data used to derive the function will produce a biased

classification score. The bias comes from the fact that the

discriminating function contains information about the

specific case it is attempting to classify. The problem of

biased classification scores can be reduced by a process

called jackknifing (9:711).

Jackknifing involves removing one case at a time from

the data set and calculating the discriminant and

47

a,1

classification functions based on the remaining cases

(9:731). The classification functions are used to classify

the removed case. The process is repeated producing a

different discriminant function for every case in the data

the. Similarity between all of the discriminant functions

can be assumed if the function appears stable. The stability

of the discriminant functions is indicated by the difference

between the unjackknifed (biased) classification accuracy

scores and the jackknifed (unbiased) classification accuracy

scores. Where significant differences exist between biased

and unbiased scores, the discriminant functions should be

considered unstable. The instability of the classification

function usually results from the discriminant function

chasing random error in its attempt to differentiate between

the groups. In those cases, the discriminating function

changes erratically as individual cases are removed from the

data. Small differences between biased and unbiased scores

indicate a stability on the original discriminant function.

With a stable, accurate classification function cases of

unknown membership can be classified based on the values of

the discriminant variables (26:445). The procedure for

classification involves the sum of the weighted discriminated

variables plus a constant. Each group has its own

classification function with unique weighting coefficients

and a unique constant. According to the SPSS manual (26:445)

"Under the assumption of a multivariate normal distribution,

the (classification function sum] can be converted into

48

probabilities of group membership." Thus, the group with the

highest classification function sum is the group in which the

given case has the greatest probability of membership.

Ideally, a discriminant function should be validated by using

it to classify a new set of known cases. Unfortunately, the

shortage of available data will limit this study to

jackknifing the set of twenty-five projects or cases to

validate the functions.

Selection Criteria for the Discriminant Variables

With a brief background in how discriminant analysis

functions it will be easier to understand the method employed

to select the variables included in the discriminant

function. For this study the Stepwise Method in the

Bio-Medical Decision Package (BMDP) was used. The Stepwise

Method begins with no variables in the discriminant function

and then evaluates all the variables ability to discriminate

between the groups. The discriminating power of the

variables is determined by the ability of the variable when

included in the equation to increase the value of a statistic

called Mahalanobis D. Mahalanobis D reflects the distance

between the two closest groups. The relative increase of

Mahalanobis D attributable to each variable is expressed in

an F-to-enter value. The larger the F-to-enter value for a

respective variable the more discriminating ability. The

first variable to ot. included in the equation is the one with

49

the largest F-to-enter value. All of the remaining variables

are then evaluated for their ability to maximize Mahalanobis

D given the other variable is already in the equation. As

new variables are added the variables already in the equation

have their F value evaluated. If the new added variable

causes the F value of a previous included variable to drop

below a specified level, that variable will be removed from

the function. In this study, some variables entering the

discriminant equation were manually controlled. The

controlled variables were primarily default values used

because of incomplete data, discriminating off default

variables would have no real meaning.

50

rF

D9 given the other variable is already in the equation. As

new variables are added the variables already in the equation

have their F value evaluated. If the new added variable

causes the F value of a previous included variable to drop

below a specified level, that variable will be removed from

the function. In this study, some variables entering the

discriminant equation were manually controlled. The

controlled variables were primarily default values used

because of incomplete data, discriminating off default

variables would have no real meaning.

50

50

Appendix B: Model Descriptions

Description of the PRICE S Model

PRICE Systems Division of RCA, Cherry Hill, New Jersey

developed and maintain PRICE S and is only one of an entire

family of RCA parameteric cost estimating models. The

acronym PRICE stands for Programmed Review of Information for

Costing and Evaluation. PRICE S, the software component of

the PRICE models estimates costs by systematically adjusting

an initial estimate based on the size and description of the

project software and development environment. The

methodology does not try to fit historical data and into

hypothesized relationships in a linear regression manner.

Instead, PRICE S is based on the opinions of knowledgable

software development managers collected and correlated in a

delphi method. These expert opinions about perceived

relationships between between costs and software development

techniques were collected and incoded into alogorithms by

Frank Freiman, the creator of PRICE S. Due to the proprietary

status of PRICE S, the exact nature of the applied algorithms

is not public knowledge.

51

PRICE S InDut Variables

The total number of possible inputs for PRICE S includes

64 variabless most of which contain default values if not

known. The minimum inputs needed for an estimate is eight.

The variables known, and used for this research project

follow.

INST - The size of the software program is inputed in

the total number of delivered, executable, machine level

instructions. This differs from the other four models which

use source code. Executable machine-level instructions are

the most basic operations of the computer. Source code are

the lines of code as written by the programmer. Source code

are processed by a language compiler resulting in machine

executable code. Generally, one line of source code will

produce more than one line of machine code.

APPL - measures the difficulty of the program

application. Each section of the program is assessed a

weighting of difficulty ranging from 0.865 to 10.95 and

multiplied by the percent that the section occupies of the

entire program. Values for APPL range from 0.865 for a

program that is 100% simple mathematical application, to

10.95 for a program that is 100% on-line operations.

RESO - represents the overhead and labor rate for the

computer developers/programmers used to develop the

software. It reflects the individual software development

company's productivity quotient. Defense Industrial values

52

typically range from 3.3 to 3.4.

UTIL - is the fraction of available memory capacity and

or timing constraints . Extra design and programming effort

is required to adapt a program within a restricted computer

memory or timing constraints.

PLTFM - is the level of reliability and testing

documentation needed. PLTFM varies from 0.6 for internally

developed production center software to unmanned and manned

spacecraft software at 2.0 and 2.5 respectively.

CPLX - attempts to capture the numerous extenuating

circumstances surrounding the development environment. Its

nominal value is one, indicating average programmers working

on a average program. Depending on the type and number of

complicating circumstances such as changing requirements or

new language, CPLX can range from 0.6 to 1.8.

NEWD,NEWC - represent the percent of the project that is

new in design and that requires new code, respectively. A

zero value represents for each of these variables indicates

that no effort is required, there is no new designing or new

coding needed. The top value is 100Y, indicating a

completely new project requiring a complete programming

effort.

The data base contained all the actual values for these

variables except cases 13-25 did not have RESO. The defense

industry standard of 3.3 was used for the RESO value for

those cases.

53

PRICE S Output Used f or Comparison

PRICE S provides output for development cost in

dollars. To provide comparability with the other models

dollars were converted to man-months. Accoding to Mr. Earl

King, Manager in Customer Relations at RCA PRICE, for the

defense industry one man-year of software development equates

to $1059000. The outputs for PRICE S in dollars were were

converted to man-months using the defense industry average.

The phases included in the development effort for all

twenty-five projects were: product design, detail design,

code and unit test and finally test and integration.

Information on PRICE S came from the reference manual of

the model (29).

54

DescriDtion of the COCOMO Model

The Constructive Cost Model (COCOMO) is a

non-proprietary model developed by Barry W. Boehm and

illustrated in detail in his software text book

Software.Enainetrina Economics. The model uses an

historical data base of 63 projects and using linear

regression fit a function through the data to try explain the

relationship between the lines of source code and the

development effort. COCOMO operates in three modes (organic

semi-detached, and embedded) depending on the type of

software being estimated. Each mode has a unique equation.

The organic mode is characterized by a stable

development environment, with minimal concurrent development

of related hardware. Simple design requirements for

interface and data processing along with a low priority on

completion schedule further reflect the organic mode. The

organic mode correlates to high productivity and less

diseconomies of scale. The development effort equation for

the organic mode is

MM - 3.2 KDSII.0 5 1 1. (2)

where

MM - product development effort;

KDS9 - effective software sizing, in thousands of

source Instructions;

EM - the 15 COCOMO development effort multipliers.

55

In contrast to the organic mode, the embedded mode is

characterized by tight constraints. Embedded software must

operate within a complex of hardware, regulations, and

operational procedures. In short, the software is expected

to conform to the envirment specifications. Embedded

software typically is expected to absorb more changes and

requries a higher level of development effort. The software

equation for the embedded mode is

MM = 2.8 KDSI1.2 H EM (3)

Between the organic and embedded modes lies the

semi-detached. It occurs when blend of the characteristics

of the organic and embedded exists. The semi-dejached mode

software equation is

M = 3.0 KDSI 1 "1 2 H1 EMi. (4)

Input Variables of COCOMO

Each of the three operating modes use the same input

variables as the development effort multipliers. The

possible ratings for each variable are (1) very low, (2) low,

(3) nominal, (4) high, (5) very high, and (6) very high.

Each variable has at least four of the possible ratings

available, but in some cases the (1) very low, (2) low and

(6) extra high rating are not appropriate responses for a

56

i~V

particular variable, in those instances (1), (2)and (6) are

not included as a rating response. For every variable Boehm

furnishes exact parameters to objectively determine the value

of the ratings. And each of these ratings has a specific

weighting which is used as a multiplier in the software

equation. A description of the cost drivers follows.

SIZE - is measured in thousands of delivered source
instructions.

DATA - the size of the project data base.

CPLX - the level of complexity of the software being
developed.

TIME - the degree of execution time constraint on the target
computer, that is, the computer on which the software is
intended to operate.

STOR - the percent of main storage used on the target
computer by the software being developed.

VIRT - the degree that the virtual machine changes during
development. The virtual machine is the complex of hardware
and software used by the software to accomplish its task.

TURN - the amount of time between input and hard copy turn
around for the development computer. The development
computer is the system on which the software is being
developed.

AtAP - the analysts capability with respect the industry
average.

AEXP - the amount of experience measure in years that the
analysts have had in the area of application of the software
being developed.

PCAP - the capability of the programmers relative the
industry average.

VEXP - previous experience in years of the programmers with
the virtual machine.

LEXP - number of years the programmers have been using the
language to used on the software being developed.

MODP - degree that modern programming practices are being

57

OEM

applied to the development effort.

TOOL - the sophistication and efficiency of the software
development tools used in the effort.

SCED - the amount of compression or stretchout exerted on the
completion schedule. COCOMO differs from both SLIM and JENSEN
in its concept of completion schedule. COCOMO proposes an
optimal schedule time and penalizes for either program
slippages or compressions. Both SLIM and JENSEN estimate a
lower effort requirement for projects developed in longer
periods of time.

The estimates used in the analysis for comparison came

from a detailed version of COCOMO. The detailed version of

COCOMO adjusts values for the effort multipliers according to

each of the development phases and produces slightly more

accurate estimates than the intermediate version. The

discriminant analysis used the effort multiplier values from

the intermediate version of COCOMO. The intermediate version

assumes the effort multiplier for each development phase

remains constant. Discriminant analysis required a single

value be used per cost driver, for each project. The

intermediatate multipliers closely approximate the average

value of the detailed multipliers for each cost driver. The

single multiplier values from the intermediate served as a

useful proxy for the phase adjusted multiplier values used in

the detailed version.

Table VIII indicates the values used in the discriminant

analysis for each respective effort multipier rating. The

values listed in Table VIII come from the intermediate

version of COCOMO.

58

2 "r'

TABLE VIII

COCOMO Cost Driver Effort Multipliers

Effort Multiplier Ratings

Very Very Extra
Cost Drivers Low Low Nominal High High High

RELY 0.75 0.88 1.00 1.15 1.40
DATA 0.94 1.00 1.08 1.16
CPLX 0.70 0.85 1.00 1.15 1.30 1.65
TIME 1.00 1.11 1.30 1.66
STOR 1.00 1.06 1.21 1.56
VIRT 0.87 1.00 1.15 1.30
TURN 0.87 1.00 1.07 1.15
ACAP 1.46 1.19 1.00 0.86 0.71
AEXP 1.29 1.13 1.00 0.91 0.82
PCAP 1.42 1.17 1.00 0.86 0.70
VEXP 1.21 1.10 1.00 0.90
LEXP 1.14 1.07 1.00 0.95
MODP 1.24 1.10 1.00 0.91 0.82
TOOL 1.24 1.10 1.00 0.91 0.83
SCED 1.23 2.08 1.00 1.04 1.10

COCOMO Output Used For Comparison

COCOMO includes in its definition of software

development the same phases used by PRICE. Those phases

include: product design, detailed design, code and unit test,

and integration and test. For the first thirteen projects,

the data included actual development effort up through code

and unit test. Therefore, for the first thirteen projects,

the COCOMO estimates were adjusted to exclude the integration

and test phase. In each case, the same phases included in

the COCOMO estimate were also included in the actual figures

for development effort.

59

Vm

A sizeable problem existed in this research effort

concerning data. For comparison, input values and actual

development effort data were needed for all four models

simultaneously. The first twelve projects had only PRICE S

and SLIM inputs. To obtain COCOMO input variables for the

first twelve projects it was necessary to translate the PRICE

S inputs. Despite this unfortunate necessity, all of

COCOMO's best estimating performances came out of the first

twelve projects.

60

V

Description of the SLIM Model

Quantitative Software Management, Inc. of McLean

Virginia has proprietary control of SLIM (Software Life Cycle

Model). Lawrence H. Putnam developed SLIM from based on the

hypothesis of P. V. Norden (Norden:71-101) that software

development effort should follow the Rayleigh distribution

function for learning. Putnam applied the Rayleigh learning

principle equation to software development resulting in the

following equation:

Ss = CKKI/ 3Td 4/ 3

where
Ss - number of delivered source instructions
K = life-cycle effort in man-years
Ck- the Technology Constant, known for the given

environment;

Td = the development time in years.

SLIM allows CK to be calibrated using past projects,

or using a description of the project, SLIM can also

calculate CK for you. Because of the Rayleigh curve

orientation, SLIM can readily perform effort-schedule

trade-offs. Equation 5 reveals that SLIM suggests a radical

trade-off between effort and schedule. Putnam refers to this

as the fourth power trade-off law because a unit increase in

schedule can reduce to the development effort by the power of

four.

61

SLIM Input Variables

SLIM has only three primary input variables SIZE, LEVEL

or Difficulty Gradient, and Technology Factor.

SIZE is measured in lines of source code, that is the

lines of code actually written by the programmer before being

comp i l ed.

LEVEL represents both the difficulty of the program and

the staffing technique used on the project. Lower values

LEVEL equate to new programs with highly intricate

interfaces, these programs generally require low staffing

levels to reduce the intercommunication and coordination load

during development. Higher values of LEVEL reflect larger

staffing levels because these projects are merely composites

of smaller sections, and communication problems are not as

much of a negative factor during development. LEVEL can

assume discrete values depending on the following

considerations:

(1) The system is entirely new - designed from and coded
from scratch. It has many interfaces and must
interact with other systems within a total management
information system structure.

(2) This is a new stand-alone system. It is also designed
and coded from scratch but is simpler because the inter-
face problem with other systems in eliminated.

(3) This is a rebuilt system where large segments of
existing logic exist. The primary tasks are
recoding, integration, interfacing and minior
enhancements.

(4) This is a composite system made up of a set of indepen-
dent subsystems with few interactions and interfaces
among them. Development of the independent

62

.....-

subsystems will occur with considerable overlap.

(5) This is a composite system made up of a set of indepen-
dent subsystems with a minimum of interactions and
interfaces among them. Development of the independent
subsystems will occur virtually in parallel.

Technology Factor for most systems ranges from 4 to 15.

The lower values reflect more advanced applications, while

the larger values describe simpler systems. The first twelve

projects in the data for this research project had technology

factors calibrated from historical data. The last thirteen

projects used the technology factor calculated by SLIM,

IBM-PC version, based on inputs describing the project.

Those input variables follow.

MONTH, YEAR - the month and year the detailed design started

ONLINE - the percent that the development that will be
online, interactive mode.

COMPUTER AVAILABILITY - the percent the development computer

will be dedicated to this project.

PRIMARY LANGUAGE - name of the computer languaged used.

SECONDARY LANGUAGE - self-explanatory.

ASSEMBLY, HOL - percent of assembly, and higher order
language (HOL) used.

4th GENERATION, DBMS, REPORT WRITER, SCREEN WRITER - percent
usage of these development tools.

TYPE - type of application the software will be used on.

REAL TIME CODE - percent of the software requiring real time
constraints.

MEMORY - percent of the target computer memory to be used by
the software.

INTERFACES - lowq moderate, or high degree of interface
complexity.

63

NEW DESIGN - percent of new design needed for the project.

MANPOWER AVAILABLITY - percent of total manpower available for
this project.

STRUCTURED PROGRAMMING, TOP-DOWN DESIGN, DESIGN/CODE
WALKTHROUGHS, PROGRAM LIBRARIAN - low, medium, or high degree of
usage for these modern programming practices.

PERSONEL EXPERIENCE: OVERALL, LANGUAGE, SIZE AND APPLICATION,
MANGEMENT, DEVELOPMENT COMPUTER - low, average or extensive
experience in the listed items.

SLIM OutDut Used for Comparison

SLIM normally defines development effort as beginning

with detailed design and ending with a fully operationally

system. The first twelve projects compared estimates and

actuals that included SLIM's normal definition. Due to data

limitations, projects 13 through 25 compared estimates and

actuals that included the front-end phase called product

design. In each case, the phases included in the actual

figures were also included in the estimate figures.

In addition to the adjustments in total development

effort, an additional input was made for projects 13 through

21 not asked for by the model. The input, peak staff

loading, was necessary due to SLIM's sensitivity to schedule

and effort trade-offs (the fourth power trade-off law).

Because the schedule data incomplete, it was not possible to

determine If the projects were incrementally developed.

Without schedule information, SLIM only returns the minimum

schedule time which is the maximum development effort. SLIM

was able to adjust the schedule away from the maximum

64

development effort with the use of the peak staff loading

input. On projects 22 through 25, the maximum development

effort was assumed because of no objective ability to adjust

the estimate otherwise.

Information on SLIM came from the user's manual of the

IBM PC version of the model (28) and a summary of the model

given in the Thibodeau report (36:A63-ASO).

65

Description of the Jensen Model

Computer Economics Incorporated (CEI) has proprietary

control of the Jensen software development model. Randall W.

Jensen developed the model incorporating the earlier work of

Putnam (27) and Doty Associates (15). Similar to the SLIM

model, the Jensen bases its estimate on the Rayleigh

development curve. The software equation used in the Jensen

Model is

Se = Cte td K 1 / 2
(6)

where

Se = the effective software size in lines of
source code including the impact of modifications
to existing software;

Ctec the effective developer constant;

td = the development time;

K = the total life cycle effort in person-years.

The effective developer constant Cte is derived from

another constant called the basic technology constant Ctb.

The basic technology constant reflects the basic development

capability of the developer such as the capability and

experience of the organization, the use of modern development

practices and the use of software tooling. The basic

technology factor is then adjusted by thirteen environmental

factors which include project reliability requirements,

memory constraints, system complexity, implementation

hardware and language etc. The equation describing the

66

Jr

relationship between the basic technology factor and the

effective technology factor is

Cto - Ctb/ (I fi) (7)

where

Ctb = the basic technology factor;

fi = the ith environmental adjustment factor.

Jensen InDut Variables

The Jensen Model had the most number of input variables

of all the models. With the exception of task complexity,

the input variables have rating options similar to COCOMO.

Each variable may be rated (1) very low, (2) low, (3)

nominal, (4) high, (5) very high and (6) extra high. And

also like COCOMO, for some variables the upper and lower

ratings are not appropriate and are not available options for

those particular variables. The task complexity variable

resembles the SLIM variable technology factor with options

ranging from 4 to 28 describing the complexity of the task

being accomplished by the software. The other variables

follow.

SIZE - measured In lines of delivered source including
adjustments for modifications of existing software.

ACAP - the analysts capability with respect the Industry
average.

AEXP - the amount of experience measure in years that the
analysts have had in the area of application of the software
being developed.

67

PCAP - the capability of the programmers relative the
industry average.

TUI - the amount of time between input and hard copy turn
around for the development computer. The development
computer is the system on which the software is being
developed.

TOOL - the use of automated software development tools used

in the project.

MODP - the use of modern development practices.

APPL - The number of years necessary for a programmer to
become nominally proficient in the specific applications area
in which the software will operate.

DISP - complexity of the display interface requirements.

HOST - amount of effort needed to adapt the software for use
in the target computer.

LEXP - number of years the programmers have been using the
language to used on the software being developed.

LOSS - effective loss due to software failure or the degree
of reliability required of the system.

MEMC - the amount of design consideration necessary to fit
software program into the main storage memory of the target
computer.

MULT - number of sites at which the development took place.

RCHO - the frequency and severity of any requirement changes.

RDED - the percent of the resources dedicated to the software
development.

RLOC - location of the support resource relative to the
development location.

RTIM - percent of the program operating under real time
opertion.

SEXP - previous experience in years of the programmers with
the virtual machine.

TIMC - the degree of execution time constraint on the target
computerp that is, the computer on which the software is
intended to operate.

VML- the degree that the virtual machine changes during
development. The virtual machine is the complex of hardware

68

and software used by the software to accomplish its task.

LAIG - the complexity inherent to the language used in the
software program.

SYST - the complexity of the development computer system.

Jensen Output Used for Comparison

The Jensen Model defines development as beginning with

System Design Review (SDR) and ending with the Final

Qualification Test (FQT). This definition for development was

used for all twenty-five Jensen efforts.

Similar to SLIM, the Jensen Model returns the maximum

development effort (i.e. the minimum schedule) if not

schedule constraint is offered. As with SLIM, for cases 13

through 21, an additional input was made for the Jensen

Model. The peak manloading was inputed to prevent a maximum

effort estimate. For cases 22 through 25, no staffing levels

were available, so a minimum schedule was assumed.

Information on the Jensen model came from the reference

manual for the JS-2 version of the model.

69

Appendix C: Model Inputs

PRICE S Inputs

Case INST APPL RESO UTIL PLTFM CPLX NEWD NEWC

1 150800 5.71 2.25 0.80 1.20 0.60 0.20 0.30

2 101800 5.73 2.25 0.80 1.20 0.60 0.90 0.90

3 101800 5.65 2.25 0.80 1.20 0.60 0.60 0.60

4 110400 5.52 2.25 0.80 1.20 0.60 0.70 0.80

5 223800 5.55 2.25 0.80 1.20 0.60 0.70 0.80

6 65600 5.58 2.25 0.80 1.20 0.60 0.50 0.60

7 39120 2.51 2.13 0.50 1.00 1.00 1.00 1.00

8 77470 2.51 2.13 0.50 1.00 1.00 1.00 1.00

9 142732 3.00 1.88 0.50 1.00 1.00 0.78 0.83

10 148700 3.00 1.88 0.50 1.00 1.00 0.90 0.50

11 194748 3.00 1.88 0.50 1.00 1.00 Z .90 1.00

12 585200 3.00 1.88 0.50 1.00 1.00 0.85 0.95

13 91700 8.09 3.30 0.60 1.20 1.50 1.00 1.00

14 51958 4.99 3.30 0.60 1.20 1.10 1.60 1.00

15 182068 6.35 3.30 0.80 1.20 1.00 0.60 0.60

16 40462 8.90 3.30 0.90 1.70 1.10 1.00 1.00

17 63944 5.08 3.30 0.50 1.20 1.00 1.00 1.00

18 31277 5.98 3.30 0.60 1.40 1.00 0.34 0.34

19 32696 5.98 3.30 0.60 1.40 1.00 0.13 0.13

20 47525 5.98 3.30 0.60 1.40 1.00 0.34 0.34

21 29250 3.00 3.30 0.50 1.40 1.10 0.40 0.40

22 82500 8.46 3.30 0.80 1.40 1.00 1.00 1.00

23 83050 8.00 3.30 0.80 1.80 1.00 1.00 1.00

24 66000 8.00 3.30 0.80 1.80 1.00 1.00 1.00

25 81900 8.00 3.30 0.80 1.80 1.00 1.00 1.00

70

COCOMO Inputs

Case SIZE RELY DATA CPLX TIME STOR VIRT TURN ACAP AEXP PCAP

1 13400 H N H H H N N VH VH VH

2 25000 H N H H H N N VH VH VH

3 26800 H N H H H N N VH VH VH

4 23750 H N H H H N N VH VH VH

5 52350 H N H H H N N VH VH VH

6 13250 H N H H H N N VH VH VH

7 12381 L N N N N N N N N N

8 27519 L N N N N N N N N N

9 32276 VL N N N N N N H H N

10 20534 VL N N N N N N H H N

11 46253 VL N N N N N N H H N

12 127775 VL N N N N N N H H N

13 26200 VH L VH N H L L N VL N

14 15987 H N H H H VL L VH VL N

15 56021 VH L H VH VH VL L VH VL VH

16 21296 H L H VH EH VL N VH H VH

17 63F44 H N VH N N L L VH N VH

18 31277 YH L VH VH H VL L VH N VH

19 32696 VH L VH VH VH VL L VH N VH

20 47525 VH L VH VH VH VL L VH N VH

21 9000 H N VH N N VL N VH N VH

22 15000 VH L VH VH VH VL H H H H

23 15100 YH L VH VH VH VL H H H H

24 12000 VH L VH VH VH VL H H H H

25 14900 VH L EH VH VH VL H H H H

71

COCOMO Inputs, continued

Cases VEXP LEXP MODP TOOL SCED MODE ND NC NI

I N N N N N E 20 30 30

2 N N N N N E 90 90 90

3 N N N N N E 60 70 70

4 N N N N N E 70 80 80

5 N N N N N E 70 80 80

6 N N N N N E 50 60 60

7 N N N N N E 100 100 100

8 N N N N N E 100 100 100

9 N H H H N 0 78 83 83

10 N H H H N 0 90 50 90

11 N H H H N 0 90 90 100

12 N H H H N 0 85 95 95

13 VL VL N H N E 100 100 100

14 N H H N H E 100 100 100

15 H N H VH N E 47 47 75

16 N VL H N N E 100 100 100

17 H H N VL L E 100 100 100

18 H H H H N E 29 29 100

19 H H H H N E 09 09 100

20 H H H H N E 04 04 100

21 L N N N N E 40 04 100

22 H H H H H E 100 100 100

23 H H H H H E 100 100 100

24 H H H H H E 100 100 100

25 H H H H H E 100 100 100

72

SLIM Inputs

Case INST LEVEL TECHFTR

1 13400 5 11

2 25000 3 11

3 26800 3 11

4 23750 4 11

5 52350 3 it

6 13250 5 It

7 12381 2 9

8 27519 2 9

9 32276 3 15

10 20534 4 15

11 46253 1 15

12 127775 2 15

13 26200 1 4

14 15987 2 6

15 56021 2 3

16 21296 1 4

17 63944 4 11

18 31277 5 10

19 32696 5 10

20 47525 5 11

21 9000 3 7

22 15000 1 4

23 15100 1 1

24 12000 1 1

25 14900 1 1

73

Jensen Inputs

EFFCT
Case SIZE MEMC MULT TCHO RDED RLOC RTIM SEXP TIMC V1VL LANG

1 6767 H N N N N H N N N N

2 23375 H N N N N H N N N N

3 20502 H N N N N H N N N N

4 19754 H N N N N H N N N N

5 44322 H N N N N H N N N N

6 9310 H N N N N H N N N N

7 12400 N N N N N N N L N N

8 27500 N N N N N N N L N N

9 26163 N N N N N N N L N N

10 18450 N N N N N N N L N N

11 44448 N N N N N N N L N N

12 116275 N N N N N N N L N N

13 26200 VH N N N N VH VL N L N

14 15987 VH N N N N L N H L L

15 26863 H N N N N EH L N L L

16 21296 H N N N N N N N L L

17 63944 EH N N N N L H VH L L

18 18289 N N N H N H H N L L

19 13356 N N N H N H H N L L

20 27754 N N N H N H H N L L

21 5490 VH N N N N N L N L L

22 15000 VH N VH EH N VH H VH L L

23 15100 YH N H EH N YH H VH L L

24 12000 VH N H EH N VH H VH L L

25 14900 VH N H EH N VH H VH L L

74

Jensen Inputs, continued

Case SYST ACAP AEXP APPL MODP PCAP TOOL TURN DISP
HOST LEXP

1 N H H N H VH N N N N N

2 N H H N H VH N N N N N

3 N H H N H VH N N N N N

4 N H H N H VH N N N N N

5 N H H N H VH N N N N N

6 N H H N H VH N N N N N

7 N N N L N N N N N N N

8 N N N L N N N N N N N

9 N H H L H H H N N N N

10 N H H L H H H N N N N

11 N H H L H H H N N N N

12 N H H L H H H N N N

13 N N N VL N N H L H N N

14 N H VL H N N H N H N L

15 N H VL N H H VH VL N VH N

16 N H H N N H L VL VH N N

17 N H H N N H L L H N L

18 N H H H H H H L H VH L

19 N H H H H H H L H VH L

20 N H H H H H H L H VH L

21 N H N H N H N N VH VH L

22 L H H H H H H H N N H

23 L H H H H H H H N N H

24 L H H H H H H H N N H

25 L H H H H H H H N N H

75

Jensen Inputs, continued

Case LOSS CPLX

1 H it

2 H it

3 H 11

4 H it

5 H 11

6 H 11

7 L 15

a L 15

9 L 21

10 L 21

11 L 21

12 L 21

13 VH 8

14 H 11

15 VH 11

16 H a

17 H I1

19 VH 11

19 VH 11

20 YH 11

21 H 15

22 VH 4

23 VH 4

24 VH 4

25 VH 4

76

Appendix D: Model Outputs

PRICE S Outputs

Case EST ACT Absolute
Dev i at ion

1 48.0 39.6 6.4

2 85.0 79.0 6.0

3 96.0 90.7 5.3

4 78.0 95.9 18.0

5 150.0 115.7 34.3

6 39.0 28.5 10.5

7 19.0 14.5 4.5

8 35.0 129.5 94.5

9 48.0 87.2 39.2

10 38.8 44.0 5.2

11 37.2 71.0 33.8

12 176.0 192.0 16.0

13 358.3 309.0 49.3

14 129.5 62.0 67.5

15 221.7 151.0 70.7

16 271.0 197.0 74.0

17 477.4 317.0 160.4

18 58.5 46.0 12.5

19 28.2 11.0 17.2

20 88.0 59.0 29.0

21 34.3 48.0 13.7

22 709.1 1000.0 290.9

23 854.0 554.0 300.0

24 674.5 337.0 337.5

25 842.4 268.0 574.2

RRMSE - 0.95

77

COCOHO Outputs

Case EST ACT Absolute
Deviation

1 7.0 39.6 32.6

2 54.2 79.0 24.8

3 61.3 90.7 29.4

4 38.4 95.9 57.5

5 101.0 115.7 14.7

6 13.3 28.5 15.2

7 38.8 14.5 24.3

8 100.8 129.5 28.7

9 34.7 87.2 52.5

10 20.7 44.0 23.3

11 60.8 71.0 10.2

12 166.0 192.0 26.0

13 312.8 342.0 29.2

14 48.2 62.0 13.8

15 138.0 154.0 16.0

16 111.3 241.0 129.7

17 235.4 490.0 254.6

18 53.0 56.0 3.0

19 43.5 12.5 31.5

20 100.0 72.0 28.0

21 11.8 59.0 47.2

22 77.9 1219.0 1141.1

23 78.5 675.0 596.5

24 59.6 411.0 351.4

25 98.0 327.0 228.0

RRMSE = 1.36

78

.: .L: LI.

SLIM Outputs

Case EST ACT Absolute
Deviation

1 45.1 39.6 5.5

2 76.9 79.0 2.1

3 90.0 90.7 0.7

4 102.2 95.9 6.1

5 307.9 115.7 192.2

6 44.6 28.5 16.1

7 27.1 17.4 9.7

8 125.4 155.6 30.2

9 38.5 71.0 32.5

10 20.7 38.0 17.3

11 34.0 36.0 2.0

12 212.1 184.0 28.1

13 354.0 342.0 12.0

14 83.0 62.0 11.0

15 140.0 154.0 14.0

16 234.0 241.0 7.0

17 509.0 490.0 19.0

18 29.7 56.0 26.3

19 15.0 12.5 2.5

20 33.7 72.0 38.3

21 55.3 59.0 3.7

22 300.0 1219.0 919.0

23 302.0 675.0 373.0

24 238.0 411.0 173.0

25 298.0 327.0 29.0

RRMSE - 1.01

79

Jensen Outputs

Case EST ACT Absolute
Deviation

1 30.4 39.6 9.2

2 134.5 79.0 55.5

3 115.0 90.7 24.3

4 110.0 95.9 14.1

5 289.0 115.7 173.3

6 45.0 28.5 16.0

7 59.0 14.5 44.5

8 153.0 129.5 23.5

9 79.2 87.2 8.0

10 62.0 44.0 18.0

11 177.0 71.0 106.0

12 559.0 71.0 106.0

13 279.5 309.0 29.5

14 65.7 62.0 3.7

15 156.5 151.0 5.5

16 204.4 197.0 7.4

17 241.2 317.0 75.8

19 153.8 46.0 107.8

19 88.3 11.0 77.3

20 212.3 59.0 153.3
21 59.8 48.0 11.8

22 146.5 1000.0 853.5

23 147.6 554.0 406.4

24 112.1 337.0 224.9

25 123.1 269.0 144.9

RRISE - 1.26

90

-.

Biblioaraphy

1. Apgar, Henry. *Software Life Cycle Cost,nProceedins
National Estimating Society Conference. 23 June 1783.

2. Bailey, John W. and Victor R. Basili. "A Meta-Model For
Software Development Resource Expenditures," National
Aerospace and Electronics Conference. 107-116. IEEE
Press, New York, 1981.

3. Boehm, B.W. Software Engineering Economics. Englewood
Cliffs NJ: Prentice Hall, 1981.

4. Bourdon, Gerald A. and Joseph A. Duquette. A Computerized
Model for Estimating Software Life Cycle Costs. Report
No. ESD-TR-77-235-VOL-I, Electronic System Division,
Hanscom AFB MA, April 1978 (AD-A053 937).

5. Computer Economics Inc. JS-2 Reference Manual. CEI,

Marina Del Rey CA, May 1984.

6. Dean, Joseph. Software Cost Estimating Analyst,
Electronic System Division. Telephone Interview. Hanscom
AFB MA. 6 February 1984.

7. Devenny, Captain Thomas J. An Exploratory Study of
Software Cost Estimating at ESD, MS Thesis,
GSM/SM/765-4. School of Engineering, Air Force Institute
of Technology. (AU), Wright-Patterson AFB OH, July 1976
(AD-A030 162).

8. Dircks, Henry F. 0SOFCOST, National Aerospace and.
Electronics Conference. 674-683. IEEE Press, New York,
1981.

9. Dixon, W. J., Brown M.B. Bio-Medical Decision Package.
Berkeley: University Of California Press, 1979.

10. Dumas, R.L. Software Acquistion Resource Expenditure
(SARE) Data Collection Methodology. The Mitre
Corporation, ESD-TR-3-214, December 1983.

It. Duquette, Joseph A. Air Staff Cost Analyst. Telephone
Interview. Pentagon, Washington DC. I January 1984.

12. Ferens, Daniel V. 'Cost Models: The Essential
Ingredient, National Aerospace and Electronics
Conference. 175. IEEE Press, New York, 1981.

13. Gibson, Jack, Chief Cost Analysis Research (ASD/ACCR).
Aeronautical System Division. Personal Interview. HG
ASD, Wright-Patterson AFB OH. 19 December 1983.

81

14. Hall, David M. "Making Sure We Can Lift the Sword,"
National Aerospace and Electronic Conference. 1018.
IEEE Press, New York, 1983.

15. Herd, J.H. Software Cost Estimation Study. Vol I &
II: Guidlines for Improved Software Cost Estimation.
Doty Assocates Inc, RADC-TR-77-220, February 1977
(AD-A042 264)

16. James, Thomas G. Software Cost Estimating
Methodology. Final Report June 1976--September 1976.
AFAL-TR-77-66. Air Force Avionics Laboratory,
Wright-Patterson AFB OH. August 1977.

17. James, Thomas 6. and Daniel V. Ferens. Application
of the RCA Price-S Software Cost Estimation Model to
Air Force Avionics Laboratory Programs. Final Report
Jan 1978 - July 1979. AFAL-TR-79-1164. Air Force
Avionics Laboratory, Wright-Patterson AFB OH. October
1979.

18. Jensen, Randall W. "A Macro-Level Software Development
Cost Estimation Methodology," Asilomar Conference on
Circuits. Systems and Computers. 320-325. IEEE Press,
New York, 1981.

19. Jensen, Randall W. "A Comparison of the Jensen and
COCOMO Schedule and Cost Estimation Models," Proceedings
of the International Society of Parametric
Analysts. 97-106. ISPA Publications, San Francisco,
1984.

20. Killingsworth, Paul, Cost Analyst Space Division.
Telephone Interview. Los Angeles AB CA, 12 February
1984.

21. Lorenzetti, Robert C. "Softech Software Cost Estimation
Methods," National Aerospace and Electronics
Conference. 1041-1048. IEEE Press, New York, 1983.

22. McCallam, Lennis H. "A Comparison of Three Software
Costing Techniques,* National Aerospace and
Electronics Conference. 1021-1026. IEEE Press, New
York, 1983.

23. Mullins, James P. "The Commander's Perspective,"
Skywriter. Wright-Patterson AFB OH. 5-S, 13 January
1984.

24. Naval Avionics Center. Life Cycle Cost Model
Estimation Trade Study. Naval Avionics Center,
Indianapolis IN. September 1983.

82

&V

25. Nelson, E. A. Management Handbook for the Estimation of
Computer Programming Costs, System Development
Corporation, Santa Monica CA. 1967 (AD-648 650).

26. Nie, Norman H., and others. Statistical Package For
The Social Sciences. New York: McGraw-Hill, 1975

27. Putnam, Lawrence H. and Ann Fitzsimmons. *Estimating
Software Costs," Datamation, a three part series,
189-192 (September 1979), 171-174 (October 1979),
137-139 (November 1979).

28. Quantitative Management, Inc. SLIM User's Manual. QSEM,
McLean VA, July 1984.

29. RCA/PRICE Systems. PRICE S Reference Manual. RCA,
Cherry Hill NJ, undated.

30. Schneider, John A Preliminary Calibration of the RCA
Price-S Software Cost Estimation Model. MS Thesis,
GSM/SM/77S-15. School of Engineering, Air Force
Institute Of Technology. (AU), Wright-Patterson AFB OH,
September 1977 (AD-A046 808).

31. Shapiro, 0. Software Acquisition Process (SWAP).
Report No. MTR-8524, ESD-TR-82-258. Mitre Corporation,
Bedford MA. December 1982.

32. Simpson, Robert. Cost Analyst Armament Division.
Telephone Interview. Eglin AFB FL, 13 February 1984.

33. Stanley, M. Software Cost Estimating. Report No.
DRIC-BR-84024. Royal Signals and Radar Establishment,
Malvern, England. 13 May 1982 (AD-A124 258).

34. Steffey, Raymond E. An Analysis of the RCA Price-S
Cost Estimation Model as it Relates to Current Air
Force Computer Software Acquisition and Management. MS
Thesis. GSM/SM/79D-20. School of Engineering, Air Force
Institute of Technology. (AU), Wright-Patterson AFB, OH.
December 1979 (AD-AO83 713).

35. Tausworth, R. L. Deep Space Network Software Cost
Estimating Model. Report No. NASA-CR-164277. Jet
Propulsion Laboratory, Pasadena CA. April 1981.

36. Thibodeau, Robert. An Evaluation of Software Cost
Estimating Models. RADC-TR-81-144. General Research
torporation, Los Angeles CA. June 1981.

37. Wolverton, R.W. "The Cost of Developing Large Scale
Software," Transactions on Computers, g-22 (6):
615-636. IEEE Press, New York, June 1974.

83

VITA

Captain Jeffrey T. Steig was born on 21 September 1954

in Philadelphia, Pennsylvania. He graduated from high school

in Honolulu, Hawaii in 1972 and attended the United States

Air Force Academy from which he received the degree of

Bachelor of Science in International Affairs of the Middle

East in June 1976. Upon graduation, he was commisioned and

attended pilot training at Reese Air Force Base, Texas. He

graduated from pilot training in August 1977 and served as an

Instructor Pilot at Reese Air Force Base until August 1980.

He then served as a Pilot Training Instructor at Randolph Air

Force Base, Texas until entering the School of Systems and

Logistics, Air Force Institute of Technology, in May 1983.

Permanent address: 103 Willoughby

Greenville, North Carolina

27834

84

AD-A147 632 AN APPLICATION OF DISCRIMINANT ANALYSIS TO THE 22
SELECTION OF SOFTWARE COST..-(U) AIR FORCE INST OF TECH 22
WRIGHT-PATTERSON AFB OH SCHOOL OF STAT.. 0 T STEIG

IUNCLASSIFIED SEP R4 AFIT/GSM/LSY/R4S-26 F/S 14/1 NIL

1.0 uiW_____ 33 2
C 31

MiCROCOPY RESOLUTION TEST CHART

NATIONAL BUREAU OF STXNOAOSr 1963-A

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE
I& REPORT SECURITY CLASSIFICATION III. RESTRICTIVE MARKINGS

UNCLASSIFIED
2& SECURITY CLASSIFICATION AUTHORITY 3. DISTRISUTION/AVAILABILITY OF REPORT

DECLSSIICATON/OINIGRAING CHEULEApproved for public release;
b DELASIFICTIO/DOWGRAING CHEULEdistribution unlimited.

4. PEFORMING ORGANIZATION REPORT NUMBER(S) S. MONITORING ORGANIZATION REPORT NLMBERIS)

APIT/GSM/LSY/84S-26
B& NAME OF PERFORMING ORGANIZATION pb. OFFICE SYMBOL 7s. NAME OF MONITORING ORGANIZATION

School of Systems and (if appliceble)

Logistics I AFIT/LS________________________

6c. ADDRESS (City. Slat. sad ZIP Code) 7b. ADDRESS (City, Stat and ZIP Codei

Air Force Institute of Technology
Wright-Patterson AFB OH 45433

Re, NAME OF FUNDING/SPONSORING Sb. OFFICE SYMBOL S. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

Sc. ADDRESS (City. Stit. end ZiP Code) 10. SOURCE OF FUNDING NOS.

PROGRAM PROjECT TASK WORK UNIT
ELE ME NT NO. NO. NO. NO.

11. TITLE fincibad Security Clauifteationl

SeeBox_19 1______________________

12. PERSONAL AUTNORIS)

13s, TYPE OF REPORT 13b. TIME COVERED 4.DATE OF REPORT (Yr.. Mo.. Da) 1.PAGE COUNT

MS Thesis FROM ___ TO ___ 1984 September 84
16. SUPPLEMENTARY NOTATION Mim AW AP191

/YZ -X
JMM fat: Research OWRbiaa ~ua

17. COSATI CODES it~ SUBJECT TERMS (con tinue on r 31401110111 #ftiggj" AW~
1

number)

FIELD GROUP 111011. OR. Software Cost Estimating, Cost Estimating Models,
Chi Cos Effect, ~ Comparison of Software Cost Estimating Models,

Mat~h ~ oftvr. flv.16pmv~t Ostn ~~ttn q~tppC~ oi1
1S. ABSTRACT lContiaaeo e.a ve, it neeua'y and I ilty by block number)

Title: AN APPLICATION OF DISCRIMINANT ANALYSIS TO THE
SZLECTION OF SOFTWARE COST ESTIMATING MO)DELS

Thesis Chairman: Richard L. Murphy
Assistant Professor

US. DISTRIBUIN/AVAILASILITY OF ABSTRACT al. ABSTRACT SECURITY CLASSIF ICATION

IJNCLABSIPIEOAI901NLIMITED 10 SAME AS RIFT. 0 OTIC VURS 0 UNCLASSIFIED

US NAME OP RESPONSIBLE INDIVIDUAL 22b. TELEPHONE NUMBER 22c. OFFICE SYMBO L

Rcad L. Nu (1) 3-28hvI/S

00 FORM 1473.683 APR EDITION OF I JAN 73 IS OBSOLETE. UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE

UNCLASSIFIED
SCURITY CLASSIFICATION OF THIS PAGE

This investigation attempted to improve software cost estimating
through the use of discriminant analysis. Currently, no quantitative
methods exist to quantitatively select the best software cost estimating
model for a particular software type or environment. By identifying the
characteristics of the software that each model was best able the
estimate, those characteristics could be used as a basis for predicting
the best model.

The analysis began by using selected models to concurrently
estimate development costs for 25 known projects. The estimates from
each model were compared and the most accurate model for each project
was identified. The projects were assigned to the group of projects for
which each model most accurately estimated development costs. The
groups were given the names of the respective models: PRICE S, SLIM,
COCOHO, and JENSEN.

After grouping each project, discriminant analysis was used to
identify those input variables from all the estimating models that best
discriminated between the groups. The identified input variables were
then used as determinant variables as a basis to predict which model was
most likely to best estimate cost for each project. The unbiased
prediction rate was 60%. Despite the high prediction rate, the overall
estimating accuracy was not reduced . The criteria statistic, relative
root mean squared error, RIRSE, for the estimates selected by
discriminant analysis was not significantly better than the RRMSE for
the expected error. The results indicated that the use of the
pre-analysis determinants to select a model would not reduce estimating
error more than a random selection of models.

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE

